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A technique is described which defines an upper bound for the effect of the truncation error 
on finite difference solutions to elliptic boundary value problems. This technique does not 
attempt to provide an estimate which can be used to correct the finite difference solution but 
rather to produce a guaranteed upper bound measure of the error which can be used to assess 
the quality of the solution. Application to two problems is given to demonstrate the basic 
features of the analysis which is implemented in a post-processing mode once the original 
solution has been completed. 0 1988 Academic Press, Inc. 

1. INTRODUCTION 

The fundamental approach in most computational methods is to discretize the 
governing differential equations. The finite difference method is a classic example of 
this approach. Here a mesh is superimposed onto the computational domain and a 
solution sought at intersecting points on the mesh, commonly referred to as nodes. 
At these locations the governing equations are represented by discrete differential 
operators derived using Taylor series expansions. If the infinite Taylor series were 
retained, an exact solution would be realized for the problem. However, for prac- 
tical reasons, the infinite series is usually truncated after the second-order term. 
This imposes an error which exists in all solutions which use the finite difference 
technique [l-3]. 

A procedure is described here which will provide an upper bound measure of the 
effect on the solution of all the trailing terms in the truncated Taylor series. This 
analysis was originally proposed for the finite element technique [4-61 but we show 
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it to be adaptable to finite difference procedures. Since this theory interprets the 
effect of residuals, it provides guidance for local solution refinement which will 
more fully capture the true physics of the problem. 

Features of the analysis are highlighted in the following sections together with its 
application to two fundamental problems. 

2. THEORY 

Methods which employ the truncation error approach to error analysis either 
compare the solution from successive refinements of the mesh or evaluate directly 
the leading terms in the truncation error given by the Taylor series. These methods 
cannot be guaranteed to either overestimate or underestimate the contribution of 
the trailing terms in the Taylor series, but if convergence is monotonic, successive 
refinements will succeed in only progressing part of the way toward the exact 
solution [l]. However, a method developed for finite elements uses a complemen- 
tary analysis to estimate the discretization error in the numerical solution [S]. This 
theory has been formulated using properties inherent in the finite element method 
to produce an estimate which yields a guaranteed upper bound on the dis- 
cretization error. The complementary analysis is shown here to be adaptable to 
tinite difference techniques producing a bounded measure of the truncation error in 
the solution. 

The essential components in the error estimate are a measure of the distance from 
the numerical solution, 4h, to the exact solution, 4, and the direction giving the 
change in nodal values when progressing from the numerical solution to the exact 
solution. In Fig. 1 we represent the discrete nodal values of the exact solution as the 
vector 14 > exact and the nodal values of the numerical solution as the vector { +J,,} in 
a two-dimensional space: 

The error, PI = bkact - b%l (1) 

is given by (2) = (~1 .d, (2) 

FIG. 1. Identification of the error in a numerical solution. 
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where d is a unit vector directed from the numerical solution toward the exact 
solution and ICI is the magnitude or scaling factor defining the distance between the 
two solutions. The error estimate will require the estimation of both d and [cl. 

To illustrate the application of the theory consider a simple elliptic problem in 
two dimensions, viz., 

with 

V’C$ = -f on the domain 0 (3) 

an = g on the boundary aQ. 

Here 4 =4(x, y) represents a continuous scalar potential function over the 
domain Q, produced by a source term f over the domain and a Neumann condition 
g, imposed along the boundary aOR. The unit vector, n, has a direction defined nor- 
mal to the boundary cX.I and is assumed positive outwards from the domain 52. 

Here a finite difference solution, $h, is sought to (3). The development of the 
theory which follows, however, requires that we propose a solution tih ES,, which 
satisfies 

B(h ICI) = (f, ICI)+ cg, $1 WESh, (4) 

where + for the moment is arbitrary and S,, is the space of admissible functions. 
Here 

(6) 

where ds is an element of the boundary curve &2. 
The difference between the exact solution, $, and the solution, #h, is defined as 

e=qb-4,. (8) 

The energy norm of the error defined by (8) is given by 

(9) 

Expanding the right-hand side of (9) yields 

B(e, e) = N4,4) - Wh 4) + B(h h). (10) 
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Here B(#, 4) is the energy norm of the exact solution and B(#,,, 4h) the energy 
norm of the discrete solution. The cross product, B(#, #,,), is simplified using 
integration by parts to produce 

If the governing differential equations, defined by (3), are imposed onto (11) for 
the Neumann problem then 

B(gl, $/I) = cg, 4/I]+ u-9 $/I). 

By definition, the solution #h satisfies Green’s identity, 

(12) 

who d/J = cg9 &II + (f, &I). 

It then follows from (12) and (13) that 

(13) 

Wh dh) = B(dh, 4/f). 

Substituting the identity from (14) into (10) gives 

(14) 

WA 4) = B(dh, dh) + B(e, e). (15) 

We note that B(e, e) provides a measure in the energy of the difference between the 
solution d,, and the exact solution 4. We also note that since 4,, satisfies (14) 

We, 4h) = B(4 - 4hr 4h) = B(4,4J - B(4h, 4h) = 0, 

that is, the error in the proposed solution dh is orthogonal in the energy norm 
to A. 

In practical applications the error in the solution is not known a priori and so the 
error norm B(e, e) cannot be evaluated directly from the numerical solution I$,,. To 
overcome this problem Kelly [S] has proposed to overestimate the truncation error 
in #h so as to provide an upper bound on the exact solution 4. 

This can be performed if a complementary variational theory is employed which 
will produce an upper bound estimate B,(e, e) of B(e, e). Clearly then from (15) we 
obtain an upper bound for B(& 4) 

WA 4) G B(dh, 4h) + Me, e). (16) 

The following section describes the method used to evaluate the two terms on the 
right-hand side of (16). 

2.1. Energy Norm of the Solution 

In the above discussion, the validity of (15) and therefore (16) is predicated on 
the requirement that d,, will satisfy Green’s identity, (13). For example, this 
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property is explicit in finite element procedures and any solution using this method 
will satisfy Green’s identity a priori [7]. 
’ Our research is directed toward adapting the complementary analysis to the finite 

difference technique. This numerical method is not based on integral relations such 
as (4) but is derived from a Taylor series expansion about local nodes. Hence if (16) 
is implemented for a finite difference solution, $h, a bounded estimate of the energy 
in the exact solution cannot be guaranteed. Therefore, for a finite difference solution 
of (3), (16) is rewritten as 

B(4,i) G B($h, Cd + CB(4L A)- B(cJh, $,)I+ &(e, e) (17) 

in which CB(dLy #A- B($,, &)I . 1s some measure of the discrepancy between the 
finite difference solution, $,, and bh. We note here that the measure proposed in 
(17), and implemented in the analysis which follows, is applicable to any solution 
and is not restricted to a finite difference analysis. 

The evaluation of the first two terms on the right-hand side of (17) is described in 
the following. The first term is the energy norm of the finite difference solution, &,,. 
This is defined by (5) as 

In the finite difference technique, $,,, and its derivatives are thought of as discrete 
values at nodal points on the mesh and not as continuous functions implied by 
(18). To evaluate the energy norm we introduce into the analysis a linear inter- 
polant of c$~. Then $h exists in S,,, permitting the explicit evaluation of B(tj,, 4,) 
and the substitution of 4h for $ in (4). The linear interpolant is the simplest inter- 
polation of the solution between the nodal values. It is chosen here to ensure that 
the complementary problem in Section 2.2 is solved with no greater accuracy than 
the finite difference solution to the original problem so that a conservative 
bounding envelope indicating the error in the exact solution should be achieved. 

Next consider the quantity within square brackets in (17). This term can be 
evaluated using the following 

B(h - +I,, 41, - hz) = B(hv ~4,) - 244,9 6,) + B(&, d/J 

Rearranging (19) gives 

(19) 

which is the measure sought in (17). Here B(+,, $,,) can be directly evaluated since 
6h is the finite difference solution. However, B(b,,, 4,) cannot be evaluated directly 
since @,, has not been defined. This problem is resolved since #,, satisfies the 
property given by (4) in which $ is replaced with the finite difference solution, 4,,. 
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Therefore 

@4/l, i/J = (f> T/J + CAT 81 

(21) 

and is therefore evaluated as an integral of known data on the boundary. 
The measure given in (20) will be implemented directly in (17) because the last 

term on the right-hand side of this expression will be cancelled by a similar term 
arising in the evaluation of B,(e, e) in the next section. At this intermediate stage, 
however, we note that CB(h, dh)-@h, id)1 P rovides a measure of the lack of 
satisfaction of Green’s identity by the finite difference solution because d,, is a 
solution satisfying Green’s identity and 4, the finite difference solution. It will now 
be shown that the last term on the right-hand side of (20) is negligible so that (20) 
can be used directly as an indicator of the effect of imposing Green’s identity (for 
example, implementing a g-point finite element differencing grid rather than the 
Spoint finite difference grid). 

Here the energy norm of (dh - 4,) is 

B(tih -cLh -i/J= 114/l -4&=& (say). (22) 

In addition, the first term on the right-hand side of (20) can be rearranged as 

B($hP i/J - mh9 4,) = B(4/l - $h> 4,) 

ek-ihII.~IIihIl. 
=A (say) (23) 

if cancellation in the integral is negligible. Then 

EN ll4h -9Ml. 
A- lItME . 

(24) 

It follows, for a particular discrete solution of (3), as might be given by finite 
difference techniques for example, that in the limit 

in which h is the mesh size. Thus (20) becomes 

and the right-hand side of (20) can be explicitly evaluated to give a measure of the 
error in the finite difference solution if Green’s identity is not satisfied. 
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Note that (17) can be written as 

B(4,9) G B(4,, 4,) + 2CB(h 4,) - B(~A> $,,I 

+ CUe, e) + B(4h - $h, dh - Th)l. (26) 

Equation (26) will be used in Section 2.3 to define the distance Ic( in (2). However, 
an expression for B,(e, e) must first be derived. 

2.2. The Complementary Error Eestimate for B(e, e) 

Earlier the quantity, B(e, e), was introduced to represent the norm of the dis- 
cretization error in dh. To perform a complementary analysis, this error is identified 
as the response to a residual forcing system which has two contributions. The first 
is a domain residual, r, representing the lack of satisfaction of the governing dif- 
ferential equations on the domain Qi. For example, the exact solution 4 in Fig. 2 
satisfies 

$+3+f=O. 
aY2 

For the discrete solution, d,,, 

a2h+a2h+f=r+o -- 
a.2 ay2 3 

where a linear interpolant in #h between nodes is assumed. 

refer bl and c.) 
\ / 

exact solu hon. $I 

a. ’ I 2 3 4 

x position 

8h 
an2 

Cm 

-c +e 

-I-- 

n 
for 6 small where : S q Bq 

d. 

FIG. 2. The residual force system on an isolated element: (a) definition of terms; (b) jump in the 
slope of the linear interpolant of (,, across boundary; (c) discontinuity in the 2nd derivative of the linear 
interpolant of & across the element boundary; (d) residual forcing system on element 2. 
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The second contribution is an interface residual q produced by the jump in slope 
of 4,, between adjacent elements, 4,, being the linear interpolant between the nodal 
values as described earlier. Here an element is defined as a region enclosed by four 
neighboring nodes on a square mesh designated as 52,. Again for the linear element 
at the boundary, 

- -+f=r*, ax + 8% 
a2 ay2 

where r* is a singular residual defined such that 

I 
+C a4 
--E 

r*dn=A%=q 

with n normal to the element edge and its origin located at the interface (Figs. 
2a, b, c). 

The response to these residual forces is the error in the numerical solution. To 
ensure that B(e, e) is overestimated it is possible to implement the complementary 
analysis defined in [S]. If the residuals are divided into self-equilibrating systems on 
each element the analysis can proceed element by element since the flows do not 
interact with those of their neighboring counterparts. The condition for self- 
equilibration becomes 

(27) 

in which 4 represents a fraction of the total interface residual which has been par- 
titioned between the current and adjacent element boundaries in order to assure 
self-equilibration (Fig. 2d). This partitioning results in the definition of splitting fac- 
tors, /I, on each interface such that /3q is allocated to one element and (1 - p)q to 
its neighbor across the interface. To determine the factors /I for the examples given 
in this paper, a conjugate gradient search algorithm [9] was implemented which 
adjusts the splitting factors on the adjacent element 
minimize the sum of squares of the residual in (27), viz., 

boundaries in order to 

(28) 

Experiments with this technique on several sample problems, indicate that R can 
be driven to zero to within machine accuracy. 

For a linear interpolant of c$~ over an element, the interface residual produced is 
a linear function in x and y along the edges of the element. To proceed with the 
complementary analysis a continuous function of Q over each element such that 
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Qx = Be/ax and Q, = ae/ay is defined. In order to guarantee a bounded estimate of 
the error, Q must satisfy the following constraints [7], 

V.Q=r on the domain sZi (29) 

and 

Q-n=4 on the boundary %2,. 

For the purpose of the examples presented in this paper, a function similar to 
that in [S] was used, viz., 

(30) 

which satisfies (29) a priori if r is a constant. 
The constants a,, az, a3, a4, a5, a6, a, in (30) are evaluated using values of the 

interface residual at selected points around the element bounary (Fig. 3). Once the 
constants in (30) have been determined on the current element, the local norm of 
the error is calculated using 

llell& = [IQ, C(QJ2 + (Q,)*l dxh. (31) 

LINEAR DISTRIBUTION OF 
THE BOUNDARY RESIDUAL 

y$.q 
REPRESENTATIVE 

RESIDUALS USED IN ERROR 
ANALYSIS - VALUES TAKEN 
AT GAUSS-LEGENDRE 
QUALIRATURE ROOTS 

FIG. 3. Assumed distribution of the interface residual. 
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The energy of the error for the solution is obtained by suming the local estimate, 
made using (31), over the domain Sz, i.e., 

(32) 
i=l 

in which N is the number of “elements” on the solution domain 0. 
It can be shown (for example, [S] or [8]) that (31) and (32) produce a guaran- 

teed upper bound on the error norm for the solution provided the residual system 
on each “element” self-equilibrates and r is constant. 

In this analysis e = &dh. To implement this theory on a finite difference 
solution $h define 

After substituting for B(dh, dh) from (20), ( 15) becomes 

WC4 4) = 44h3 i/J + x-W#/l, i/J - B(4h 1dl 
+ Wdh - $h, tih - 4,) + Ne, e). 

The error norm for the finite difference solution B(C, P) is introduced onto the right 
hand side of the above equation as 

W&4) = 46h $5,) + xa4,, 4/J - H6,9 Q5h)l 
+ W4h -A, $h -A) + NC 4 + [We, e) - W, 31. (33 ) 

Expanding the last term in square brackets 

B(e, e) - 46 4 = 44 - fh 4 - 4d - B(4 - &h, 4 - 4,) 

= Wh 4) - wql, $/I) + w&z, d/J 

- B(44 4) + 2ac4 i/J - aA9 id. 

From (14) B(#, dh) = B(Qlh, d,,), therefore 

B(e, e) - 45 e) = -B(dh, 9M + MA id - 4&, Bd. 

Finally since $,, ES,, and can be used as the function $ in (4) 

B(d9 i,> = H&l, iA 

with the result 

581/74/l-15 
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Thus (33) becomes 

- - By using the complementary theory to produce an upper bound estimate of B(e, e), 
(34) becomes 

- - where B,(e, e) is obtained by substituting 2 for e in (32). The terms on the right- 
hand side of (35) are evaluated from the finite difference solution using Eq. (18), 
(21), (3 1 ), and (32) and will be used in the next section to produce an upper bound 
estimate of ICI defined in (2). 

2.3. Local Error Estimation 

In the previous section a measure of the discretization error was introduced in 
terms of the norm B( ., . ). In addition, the distribution of this error over the solution 
domain was identified by analyzing the mesh as a series of self-contained elements 
whose residual forcing system is required to self-equilibrate. Clearly it is necessary 
to define a measure of the pointwise error in $h and its derivatives. 

Here it is proposed to implement a scaling procedure to estimate the error 
pointwise. To achieve this the direction of the error, d in (2), must be identified. 
Obviously this direction can be obtained by a re-solution of the differential 
equations on a more refined or more coarse mesh. Solution on the more coarse 
mesh is clearly more desirable since it is less time consuming. The direction thus 
obtained can be expected to be acurate only when the grid is sufficiently line for the 
solution to have entered the asymptotic range. This method has been adopted into 
this analysis. No additional expense in using this technique is incurred if the finite 
difference algorithm has already derived a solution on a coarse mesh to accelerate 
its convergence. 

If $*Zh is the finite difference solution on a coarse mesh, the relined solution $h, 
can be scaled to 4 using 

~=4h+c(hl -&I) (36) 

in which c is the scaling factor (or distance measure) to be evaluated. The energy 
norm of & is defined 

U-3 4, + Cg, dl = B($,, 6,) + XB(h 4,) - B(k id1 + WC ?I, (37) 

where (f, 4) and [g, 61 are evaluated using (6) and (7). If 4 in (36) is substituted 
into (37), and (21) is implemented, an expression for the scaling factor is given by 

(38) 
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with the terms in the denominator evaluated using (21). The solution 4 will then 
have an energy norm equal to the upper bound on the right-hand side of (37). 

3. EXAMPLES 

Here two examples are presented to demonstrate the ability of the error analysis 
to produce a bounded estimate of the error in the finite difference solution. In 
addition, two difference operators are introduced to substantiate the procedure 
used to sense the satisfaction of Green’s identity in the solution. Data from a finite 
element analysis of these examples has been used to verify the findings in (25). 

The two examples presented differ in the distribution of discretization error over 
their respective domains and hence produce separate challenges for the theory. Here 
the first example exhibits a relatively uniform distribution of error over the solution 
domain whereas the second example is characterized by highly localized regions of 
discretization error. 

3.1. Membrane Analogy on a Square Domain 

The problem analyzed in this example is defined in Fig. 4. Here a solution is 
sought to the Poisson equation for the dependent variable 4 over the domain s2. A 
constant source term,S, is imposed over the domain, Sz and homogeneous Dirichlet 
conditions enforced on the boundary, XL For this analysis a value off = 1 has 
been selected for the source term. 

A finite difference solution to the governing differential equations was obtained 
by implementing a 5-node operator (Fig. 5a) over the domain, Q. The resultant set 
of linear difference equations was solved by accelerated Gauss-Siedel (SOR) 
iteration using overrelaxation. Convergence of the solution occurred when the 
maximum change in 4,, over the domain fell within Il.0 x lo-‘1. The optimum 
relaxation factor for the chosen mesh size was obtained from [lo]. Three mesh 
sizes were examined for this example. They included a coarse (5 x 5), medium 
(9 x 9) and fine (17 x 17) grid. 

qko 

x I$=0 

FIG. 4. Definition of the membrane analogy problem. 
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a b 

FIG. 5. Structure of the 2nd-order finite difference operators. 

Table I presents the results of this analysis. The first column gives the energy 
norm of the finite difference solution evaluated using (18). The second column gives 
the norm B(bh, 4,) evaluated from the finite difference solution using (21). The - - third column contains the norm B,(e, e) evaluated using the procedures described 
in Section 2.2. A measure of the efficiency of (35) in providing an upper bound 
estimate of the required distance measure /cl between the finite difference solution 
$,, and the exact solution 4 is given by 8 in the fourth column. The effectivity 
index, 0, is defined from (35) as 

Clearly a value of 0 greater than one but also close to one is needed. The energy 
norm for the “exact’ solution B(qJ d) required in (39) was evaluated using 
Richardson’s extrapolation on the numerical results in the fifth column of Table I. 

To illustrate the above procedures consider the results for the finite difference 
solution on the (5 x 5) mesh in Table I. Here the upper bound estimate for the 
distance (c( in (2) is given by 

2(288.08 - 259.60)+ 58.39 = 115.35. 

TABLE I 

Error Analysis for the Membrane Analogy Problem 

Bound 
Grid Bkbh, 41,) BhL h‘,, B,(L 4 8 B(4h,hJ 2+0 ; 0 from (35) 

Coarse 
5x.5 259.60 288.08 58.39 1.2560 319.74 2.11 115.35 

Medium 
9x9 325.40 334.24 10.21 1.0710 343.34 2.03 27.89 

Fine 
17 x 17 344.68 347.02 2.17 1.0133 349.40 2.02 6.85 

“Exact” 351.44 
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These values are entered in the last column of Table I. The exact distance of (cl 
from our knowledge of the “exact” solution to this problem is 

351.44 - 259.60 = 91.84, 

giving the effectivity index 

115.35 
@= 91.84 

- = 1.2560. 

To independently test the factor [2 + 0(&/A)] in (25), the fifth column in Table I 
gives a solution satisfying (4). This result was obtained using a 9-point scheme 
giving directly the Galerkin finite element solution 4h. For the coarse (5 x 5) mesh 
the factor applied to the measure [B(4,,, &,)-B(qI,, $,,)I in (25) is 

The error estimate ll~Zll& is evaluated independently on each subregion bounded - - by four nodes using (31) and summed to give the total norm, E,(e, e). In finite 
element work the distribution of this error norm on each element has been used to 
guide local adaptive relinement of the mesh (e.g., [4]). The contour plots in Fig. 6 
indicate that the truncation error for this problem is relatively uniformly distributed 
compared, for example, to the same plot given for the next example. 

After implementing the complementary analysis, the finite difference solution was 
scaled to the predicted energy bound using the procedures outlined in the previous 
section (Fig. 7a, b). Here the scaled solution converged monotonically toward the 
exact solution as the mesh was uniformly refined over the domain. The finite 
difference analysis on the line (17 x 17) mesh produced numerical results which 
were close to the exact solution over the domain 8. Thus, pointwise refinements to 
the solution produced a negligible change between the original numerical results 
and the exact solution (Fig. 7b). 

.b. 

FIG. 6. Contours of local error norm for the membrane problem: (a) medium (9 x 9) mesh; (b) fine 
(17 x 17) mesh. 
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EXACT SOLUTION EXACT, ORIGINAL AN0 
SCALED SOLUTIONS 
COALESCE 

FINITE DIFFERENCE 5-POINT FINITE 
SOLUTION SCALED TO 

/ 

DIFFERENCE SOLUTION 
UPPER ENERGY BOUND 

\ I 

0 2 4 6 8 l0 0 2 4 6 B 10 

X POSITION X POSITION 

id) tbl 

FIG. 7. Pointwise refinements to the membrane analogy problem. 

3.2. Two-Dimensional Inviscid Flow about a Bluff Body 

In the first example a problem was examined which had a relatively uniform dis- 
tribution of the discretization error over the solution domain. Here a more general 
form of problem is considered which has highly localized regions of truncation 
error. This example is defined in Fig. 8a. In this problem the Laplace equation is 
solved to find the distribution of velocity potential, 4, around a bluff body con- 
tained between two impermeable surfaces. The flow into and out of the control 
volume, 0, is constrained to the horizontal plane. Neumann boundary conditions 
are enforced on all surfaces of the domain including the boundaries adjacent to the 
bluff body in order to satisfy the no-flow condition at the boundary interface. A car- 
tesian mesh system was used to conform to the geometry of the solution domain 
(Fig. 8b). 

Two second-order finite difference operators were used to verify the theory. The 
first is the classical 5-node scheme (Fig. 5a) used by most researchers in finite dif- 
ference methods [l, 10,111. The second approach implements a 9-node operator 
(Fig. 5b) which has properties found in the local stiffness matrices of the finite 
element method [12]. However, the use of the 9-node operator in this research 
does not mimic the finite element analysis since the boundary conditions for this 
problem are enforced in a manner consistent with conventional finite difference 
procedures [ 10, 111. Using this approach, two different finite difference solutions 
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%2,-V 
an 

FIG. 8. Problem definition and mesh structure. 

b. 

may be generated for the same problem. This tests whether the findings in (25) are 
general enough to apply to an arbitrary difference operator or if the analysis is 
confined to a particular class of difference scheme. 

The distribution of velocity potential, 4, for this example was examined on a 
coarse (7 x 7), medium (13 x 13), and tine (25 x 25) mesh by implementing a direct 
solver on the banded system of linear equations generated by applying the dif- 
ference operators at each node in the solution domain, Sz. The numerical solutions 
to the governing equations were analyzed using the theory proposed earlier. 

The results in Table II again indicate that an accurate estimate of the distance lc( 
in (2) can be obtained by the procedures recommended in this paper. The column 
for 8 indicates a close upper bound on ICI has been achieved and the second last 
column, which contains the factor [2 + 0(&/A)], verifies the findings in (25). The 
factor 0 remains approximately constant because the error prediction and the 
actual error are converging to zero at the same rate. 

TABLE II 

Error Analysis of the Flow Field around 
a Bluff Body Evaluated Using a S-Point 2nd-Order 

Finite Difference Operator 

Grid B&z, i,) BW,. 6,) &CC 3 8 B(~,,>QIJ 2+0 f 
0 

Bound 
from (35) 

Coarse 
1x1 

Medium 
13x13 

Fine 
25x25 

“Exact” 

114310 119259 4523 1.0542 125253 2.21 14421 

122243 124457 1761 1.0769 126933 2.12 6189 

125650 126576 680 1.0821 127582 2.09 2532 

127990 
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TABLE III 
Error Analysis of the Flow Field around 

a Bluff Body Evaluated Using 
a 9-Point 2nd-Order Finite Difference Operator 

Grid 
Bound 

B&hr hh) B(hr hh) 4,k 3 8 from (35) 

Coarse 
1x1 

Medium 
13 x 13 

Fine 
25 x 25 

“Exact” 

121054 123081 4481 1.2305 125253 2.07 8535 

125187 126046 1659 1.2048 126933 2.03 337-l 

126876 127226 621 1.1858 127582 2.02 1321 

127990 

A clearer picture of the monotonic convergence of the solution is given by the 
results in last column in Table II. This quantity is evaluated from the right-hand 
side of (35) and provides a measure of the accuracy between any two solutions. For 
example, comparison between the results in Tables II and III for a particular mesh 
show conclusively that the 9-point operator has produced more accurate results 
than those obtained using the conventional Spoint scheme. 

In an approach similar to that of the previous example, a Galerkin finite element 
method was used to produce a reference solution, and hence energy norm, which 
satisfies Green’s identity. This norm is used as a measure against which the results 
from the finite difference analysis are compared in order to verify our findings in 
(25). The energy norm for the exact solution was estimated using Richardson’s 
extrapolation of the finite element results for the three different mesh sizes given in 
Tables II and III. 

The complementary analysis was implemented for the finite difference method 
using both operators. This produced distributions of the discretization error over 
the solution domain (Fig. 9). As expected, high localized error norms were obtained 

CONTOURS OF CONSTANT 
ERROR NORM, 

I 
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‘\ 

FIG. 9. Contours of local error norm for the 5-point finite difference solution to the bluff body 
example. 
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FIG. 10. Pointwise refinements to the bluff body example. 
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at the corners of the bluff body. This result reinforces confidence in the complemen- 
tary analysis to reflect the correct distribution of error in a numerical solution. 

The original finite difference solution, 4,,, on the medium (13 x 13) mesh was 
extrapolated to the bounds given by the complementary analysis using the scaling 
procedure described earlier. Results from the coarse mesh (7 x 7) solution were used 
in conjuction with the medium mesh data in order to evaluate the scaling factor 
defined by (38). The bounded results are presented in Fig. 10, where Richardson’s 
extrapolation was used on the original numerical solutions and the result presented 
for reference purposes. 

4. CONCLUSIONS 

A method has been proposed which estimates the magnitude of all the terms in 
the truncated Taylor series and the influence of this error on the finite difference 
solution. The analysis guarantees a bounded estimate in the energy norm, of the 
truncation error provided the theory is implemented exactly. Preliminary research 
indicates that the numerically implemented bounds are in close proximity to the 
exact solution for reasonably coarse grids and show excellent comparison with 
further refinements to the mesh. 

In addition, (25) provides a measure of the distance from a finite difference 
solution to one that satisfies Green’s identity. This latter class of solution includes 
the finite element technique, among others. The measure is evaluated from the finite 
difference results and does not require any re-solution. Preliminary results suggest 
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that this method is independent of the type of difference operator used to solve the 
governing differential equations. We note here that this research has chosen to 
apply (25) to solutions generated by the finite difference technique. However, it 
should be realized that this equation has a more general application to any 
numerical solution, The authors are investigating the use of the local errors to guide 
the placement of the grid points using transformations based on body-fitted coor- 
dinates. The error contours in Fig. 9 will be used to define the local mesh density. 
The use of the energy of the error to define the mesh layout has been verified in the 
finite element method [4] and the benefits should transfer to the finite difference 
technique. 

Implementation of the analysis proposed here on two fundamental problems has 
produced encouraging results from this initial research. 
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